
Final Report
(Interim Period 9 to 12)

submitted to
European Research Office

USARDSG-UK
Edison House

223 Old Marylebone Road
London, NW1 5TH

England

31 May 2000

Modeling Transport Phenomena within the FSU Information
Analysis System

R&D 8837-EN-01
Contract N68171-99-C-9027

Principal investigator:
Dr. J.M.F. Masuch

Institution:
Applied Logic Laboratory (ALL)

University Foundation
Amsterdam

Plantagekade 57
1018 ZV Amsterdam

the Netherlands
tel: #.31.20.422.97.67
fax: # .31.20.422.97.68

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited i

W3ß &UM3S1 IHEPICüED 4
20000816 028

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

1. Title

Modeling Transport Phenomena within the FSU Information Analysis System:
Final Report (Interim Period 9 to 12)

2. Abstract

Within this project report, we describe the technical methods for organizing,
documenting, and archiving an Oracle 8.i Relational Database Management System
(RDBMS). These procedures are required by the Ministry of Defense (MOD), Scientific
Center for the Safety and Security of Technical Means (SCSSTM) in St. Petersburg,
Russia for emergency operations within the Information Analysis System (IAS) and the
emerging Center for Technical Diagnostics (CTD). Within the IAS system, the Oracle
procedures are required to organize geo-spatial data for analysis and display by five
major field teams. Within the CTD, the Oracle algorithms are required to organize
destructive and non- destructive materials data for analysis by technical diagnostics
teams. This report builds upon a series of course work developed for the MOD by
ALL/ERO presented in St. Petersburg during 31 January to 4 February 2000 by Mr.
Alexander Starshinin (IT/Peter-Service - St. Petersburg) and expanded by Dr. Alexandr
Ptitzyn (IT- Moscow) on 16-18 February 2000. Further documentation (technical
abstracts) were provided to MOD during the period 22-23 February 2000 as a
component of the basic laboratory support for the IAS.

The course curriculum was designed to assist MOD in their use of RDBMS within a
highly distributed field based system. Since one or more server may be accessed by a
mobile team, the Database Administrator (DBA) is commonly required to organize and
distribute information in an effective manner. This is the occurrence during emergency
operations. When accessing records from a blind server, a common problem is the
organization of class data, and the recreation (or modification) of the database access
tables. If export and import can be used, this task is fairly easy to accomplish; however,
sometimes the DBA is required to provide DDL (Data Definition Language) for this
purpose. The DBA may wish to document existing procedures, views, constraints and
such other structures as they see fit, with human readable (easily understood) output.
The standard Oracle 8.i techniques fall short of the mark in providing the DBA with
documentation, so alternative techniques are required. Hence, the DBA must develop
SQL, PL/SQL and SQLPLUS code to delve into the inner workings of the Oracle Data
Dictionary tables and re-generate the required DDL.

In this final report, an integrated methodology for documenting an existing Oracle 8.i
Instance is provided. In this terminology, the word Instance is used to define the
organization and operating state of the database (IAS or CTD). By using these steps a
DBA can create a series of scripts that allow documentation and, if required, recreation

Modeling Transport Phenomena within the FSU Information Analysis System

Final Report

R&D 8837-EN-01

of an Oracle 8.i RDBMS under emergency operations. This research demonstrates
techniques that can be used in creating these scripts. The source code for the database
object information is provided.

This research is the final component within this BAA project. The documentation is
required for the future development of the CTD laboratory information management
systems (LIMs). Since these new systems may interface with the current IAS Oracle
RDBMS, considerable attention is required to ensure the proper exchange of data
structures (GIS versus materials testing) and related LIMs measurements. This report
describes the data dictionary (lookup) components that will be required for efficient
operations, and examines the basic methods for controlling two or more systems (log
documentation). It is understood that one system may reside within a single local area
network (the IAS) and the second system may be used within an entirely separate
network with an independent operating environment (the CTD). It is also understood,
that these systems may be physically disconnected from one another due to security
limitations within the SCSSTM. For this reason, a common data dictionary must be
developed that will be used by each independent network. Once this common structure
is established, data can be transferred on physical media (tape, cartridge, etc.) without
loss of attribute information. This research, and future efforts, will ensure a safe and
effective transfer of topographic data between the IAS and CTD for MOD mission
requirements.

3. Contents

Section 4 Introduction Pa8e 4

Section 5 Organization of the RDBMS page 5

Section 5.1 Control Files Page5

Section 5.2 Documenting the Database Initialization page 7
Section 5.3 Documenting Tablespaces and Rollback Segments page 12
Section 5.4 Documenting Roles, Grants and Users page 13
Section 5.5 Documenting Tables page 13
Section 5.6 Documenting Database Constraints page 13
Section 5.7 Documenting Indexes and Sequences in the Database page 14

Section 6. Documenting Packages Bodies, Procedures and Functions page 15

Section 6.1 Documenting Triggers and Views page 20
Section 6.2 Snap Shot and Snap Shot Log Documentation page 20

Section 7 Process Termination page 21

Section 7.1 Killing an Oracle Session from the Oracle Side page 22
Section 7.2 Killing an Oracle Session From the UNIX Operating System page 23

Section 8 Training Page 26

Section 9 Conclusions page 34

Section 10 References Page 36

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

4. Introduction

The Oracle Data Dictionary is a collection of C language constructs, Oracle tables
and Oracle views. At the lowest level are the "hidden" C structures known as
the X$ tables. These X$ tables are usually best left alone. Indeed, to even see the
contents a DBA has to jump through a few hoops and once they do get to them,
they are not well documented and have such logical attributes as "mglwmp" or
"tabsrpr". Needless to say, unless the DBA has several long nights available and
a penchant for solving riddles it is suggested that they leave these to Oracle.

The next layer of the Oracle Data Dictionary is the $ tables. These are more
human readable cuts of the X$ tables and have such names as COL$ or TAB$.
While being a step above the X$ structures, it is still suggested that the DBA only
use them if they are really needed.

The third layer of the dictionary is the V$ views and their cousins the V_$ tables
(actually, Siamese twins since for nearly all of the V$ views there is a
corresponding V_$ view). These are the workhorses of the Data Dictionary and
what most of your scripts should deal with.

The final layer of the dictionary (for our purposes) is the DBA_ series of views.
These views are made from the V$ and $ sets of views and tables and provide a
very friendly interface for viewing the insides of your Oracle Data Dictionary.
The USER_ and ALL_ views are based on the DBA_ views.

A good set of build scripts will provide excellent documentation for such an
instance. Essentially there are two types of documentation, "hard"
documentation such as DDL that an experienced database developer can
understand, and "soft" documentation such as generalized reports showing
structures and relationships that anyone with a smattering of database
experience can use. This report will deal more with creating "hard"
documentation, that is, the scripts to rebuild the database.

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

5. Organization of the RDBMS

Within Oracle 8.i the database contain the following items:

Hard Objects Stored Objects

Tables, places and their associated Data files View definitions
Control Files Constraints
Redo Logs Procedures
Rollback Segments Functions
Tables Packages
Indexes Package Bodies
Database Initialization file Triggers
Clusters User definitions

Roles
Grants
Database Links
Snapshots and Snapshot Logs

In the following pages this report will cover how to generate the required DDL
to recreate or document each of the above database objects using SQL, PL/SQL
and SQLPLUS.

5.1 Control Files

Initially, we document the Control file since this is the only location where the
information for MAXDATAFILES, MAXLOGFILES MAXMEMBERS and other
instance specific data can be found.

Having a script around that rebuilds the control file is vital to emergency
operations. In the context where the Oracle instance was built, with very little
understanding of how Oracle builds their default instances, a highly
dysfunctional database is created. This is particularly apparent when using the
default Oracle procedures for the vanilla build. The DBA will find their
MAXDATAFILES will be set to 20 or maybe 32 and that other hard database
limits are probably set too low. Once the DBA generates a script to rebuild their
control files, they can change these hard database limits without rebuilding the
database. This is accomplished by simply rebuilding the control files. In other
situations, a disk crash can wipe out the control file (hopefully there is more than

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

one, but maybe a DBA didn't create the database?), and leave the database
unable to start. With a rebuild script on hand, the DBA can operate the RDBMS
without significant loss of data or operating function.

A DBA can backup the control file with the command:

ALTER DATABASE BACKUP CONTROLFILE to 'filename' REUSE;

However, the above command only makes a machine-readable copy (which is an
excellent idea for when changes are made to structures). A DBA should usually
backup the control file with each set of backups. Of course, this doesn't provide
documentation of the control file.

Since there are no tables which document the control files (other than
v$parameter which only documents their location) the DBA must depend on a
system command to provide them with the required script

ALTER DATABASE
BACKUP CONTROLFILE TO TRACE NORESTLOGS;

The output from this script is the following:

Dump file H:\ORAWIN\RDBMS81\trace\ORA14071.TRC
Thur Mar 3010:05:53 2000
vsnsta=0
vsnsql=a vsnxtr=3
MS-WINDOWS
Thur Mar 3010:05:52 2000
Thur Mar 3010:05:53 2000

*** SESSION ID:(5.3)
The following commands will create a new control file and use it
to open the database.
No data other than log history will be lost. Additional logs may
be required for media recovery of offline data files. Use this
only if the current version of all online logs are available.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "ORACLE" NORESETLOGS

NOARCfflVELOG
MAXLOGFILES32

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

MAXLOGMEMBERS 2
MAXDATAFILES 32
MAXINSTANCES16
MAXLOGHISTORY 1600

LOGFILE
GROUP 1 'H:\ORAWIN\DBS\wdblogl.ora' SIZE 500K,
GROUP 2 'H:\ORAWIN\DBS\wdblog2.ora' SIZE 500K

DATAFILE
'H:\ORAWIN\DBS\wdbsys.ora' SIZE 10M,
'H:\ORAWIN\DBS\wdbuser.ora' SIZE 3M,
•H:\ORAWIN\DBS\wdbrbs.ora' SIZE 3M,
'H:\ORAWIN\DBS\wdbtemp.ora' SIZE 2M

Recovery is required if any of the datafiles are restored backups,
or if the last shutdown was not normal or immediate.
RECOVER DATABASE

Database can now be opened normally.
ALTER DATABASE OPEN;

As shown within this output, all the required "hard" database setpoints are now
documented. The output from the command is located wherever the system
places its system level trace files (check v$parameter on a wildcard name search
for*%dump%').

5.2 Documenting the Database Initialization

The initialization file, commonly called INIT.ORA or initSTD.ora where the SID
is the database instance name, is another key file for the database documentation
set Sadly, the initialization file is often overlooked. All of the values used in the
initialization process are stored in the V$PARAMETER table. A fairly simple
SQLPLUS script can be used to document these values.

Once the control file settings and the initialization file settings are documented,
it is time to document the database itself. In this instance, MOD must create a
script that will generate a "bare bones" CREATE DATABASE command. The
script should have the MAX set of parameters from the CREATE
CONTROLFILE command edited into it between the DATAFILE and
NOARCHIVELOG (or ARCfflVELOG) clauses. The tables used to document the

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

database for a CREATE DATABASE command would consist of
DBA_DATA_FILES for the location of the SYSTEM tablespace datafiles. In
addition, the V$LOGFILE for the locations and sizes of the redo log files and the
V$LOG view for the structure of redo logs, groups and threads.

Essentially, the script for documenting the database creation procedure would
define cursors for the database datafiles, the redo log related items and the redo
groups. The scripts would then use loop constructs to populate a temporary
table with the required command syntax and once complete, a simple selection
from this temporary table builds your command file. Since this CREATE
DATABASE process uses all of the techniques that can be used to document
other database structures, the script used to generate the CREATE DATABASE
command is a good example to show how this technique is applied:

*^*JHfc*^*^^*^**HHtJH**^*^*dHfc*^*^^*^****^*^*^*^*********

REM FUNCTION: SCRIPT FOR CREATING DB
REM
REM This script must be run by a user with the DBA role.
REM
REM This script is intended to run with Oracle8.
REM
REM Running this script will in turn create a script to
REM rebuild the database. This created
REM script, crt_db.sql, is run by SQLDBA
REM
REM Only preliminary testing of this script was performed.
REM Be sure to test it completely before relying on it.
REM
REM

set verify off termout off feedback off echo off pages 0
set termout on
prompt Creating db build script-
set termout off;

create table db_temp
(lineno NUMBER, text VARCHAR2(255))

/
DECLARE

CURSOR dbf_cursor IS
select file_name,bytes
from dba_data_files
where tablespace_name='SYSTEM';

CURSOR mem_cursor (grp_num number) IS
select member

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

from v$logfile
where group#=grp_num
order by member;

CURSOR thread_cursor IS
select thread#, group#
from v$log
order by thread#;

grp_member v$logfile .member % TYPE;
db_name varchar2(8);
db_string VARCHAR2(255);
db_lineno number := 0;
thrd number;
grp number;
filename dba_data_files.file_name% TYPE;
sz number;
begin_count number;

procedure write_out(p_line INTEGER,
p_string VARCHAR2) is

begin
insert into db_temp (lineno,text)

values (db_lineno,db_string);
end;

BEGIN
db_lineno:=db_lineno+l;

SELECT 'CREATE DATABASE ' | | value into db_string
FROM v$parameter where name='db_name';

write_out(db_lineno/db_string);
db_lineno:=db_lineno+l;

SELECT 'CONTROLFILE REUSE' into db_string
FROM dual;

write_out(db_lineno,db_string);
db_lineno:=db_lineno+l;

SELECT 'LOGFILE (' into db_string
FROM dual;

write_out(db_lineno,db_string);
commit;
if thread_cursor%ISOPEN then

close thread_cursor;
open thread_cursor;

else
open thread_cursor;

end if;
loop

fetch thread_cursor into thrd,grp;
exit when thread_cursor%NOTFOUND;
db_lineno:=db_lineno+l;
db_string:= 'THREAD ' | | thrd | |' GROUP ' | | grp | |' (';

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

write_out(db_lineno,db_string);
if mem_cursor% ISOPEN then

close mem_cursor;
open mem_cursor(grp);

else
OPEN mem_cursor(grp);

end if;
db_lineno:=db_lineno+l;
begin_count:=db_lineno;
loop

fetch mem_cursor into grp_member;
exit when mem_cursor%NOTFOUND;
if begin_count=db_lineno then

db_string:="" | | grp_member | | "";
write_out(db_lineno,db_string);
db_lineno:=db_lineno+l;

else
db_string:=y| |"'| |grp_member| |"';
write_out(db_lineno,db_string);
db_lineno:=db_lineno+l;

end if;
end loop;
db_lineno:=db_lineno+l;
db_string:-)';
write_out(db_lineno,db_string);

end loop;
db_lineno:=db_lineno+l;
SELECT')' into db_string from dual;
write_out(db_lineno,db_string);
commit;
if dbf_cursor% ISOPEN then

close dbf_cursor;
open dbf_cursor;

else
open dbf_cursor;

end if;
begin_count:=db_lineno;
loop

fetch dbf_cursor into filename, sz;
exit when dbf_cursor%NOTFOUND;
if begin_count=db_lineno then

db_string:='DATAFILE ' | |"" | | filename | |"" | |' SIZE ' | | sz | |' REUSE';

db_string:=',' | |"" | | filename | |"" | |' SIZE • | | sz | |' REUSE';
end if;
db_lineno:=db_lineno+l;
write_out(db_lineno,db_string);

end loop;
commit;
SELECT decode^aluc'TRUE'/ARCHrVELOG'/FALSE'/NOARCHrVELOG')

10

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

into db_string from v$parameter where name='log_archive_start';
db_lineno:=db_lineno+l;
write_out(db_lineno,db_string);

SELECT ';' into db_string from dual;
db_lineno:=db_lineno+l;
write_out(db_lineno,db_string);

CLOSE dbf_cursor;
CLOSE mem_cursor;
CLOSE thread_cursor;
commit;
END;

column dbname new_value db noprint
select value dbname from v$parameter where name='db_name';
set heading off pages 0 verify off
set recsep off
spool rep_out\&db\crt_db.sql
col text format a80 word_wrap
select text
from db_temp
order by lineno;
spool off
set feedback on verify on termout on
drop table dbjemp;
prompt Press enter to exit
exit

The reason this script is so long is that there may be multiple datafiles for the
SYSTEM tablespace, and there most certainly will be multiple redo logs, redo log
groups and possibly redo log threads. This multiplicity of files results in the
need for a cursor for each of the possible recursions and a loop-end loop
construct to support the selection of the data from the database.

It is ironic that all of the above code is used to produce the following
output:

AAAAAAAAA*AAAAAAAAAAAAAAAAA«A*******

CREATE DATABASE ORCSPCD1
CONTROLFILE REUSE
LOGFILE (
THREAD 1 GROUP 1 (
■/vol2/oraclel/ORCSPCDl/loglORCSPCDl.dbf

)

11

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

THREAD 1 GROUP 2 (
•/vol2/oracle2/ORCSPCDl/log20RCSPCDl.dbf'

)
THREAD 1 GROUP 3 (
'/vol3/oracle3/ORCSPCDl/log30RCSPCDl.dbf'

)

DATAFILE '/voß/oraclel/ORCSPCDl/systORCSPCDl.dbf SIZE 41943040 REUSE
NOARCHIVELOG

As previously stated, the script should have the MAX set of parameters from the
CREATE CONTROLFILE command edited into it between the DATAFILE and
NOARCHIVELOG (or ARCHIVELOG) clauses. One should also consider
creating soft documentation for database related items. This would consist of
reports on the redo logs, system parameters, and datafiles for the SYSTEM
tablespace.

5.3 Documenting Tablespaces and Rollback Segments

Tablespaces and their underlying datafiles should be created immediately after
the database itself. A script should be written using information in
DBAJTABLESPACES and DBA_DATA_FILES to create the DDL required to
make an exact duplicate of a system's existing tablespace/datafile profile. Note
that each tablespace may have a number of datafiles associated with it, so
PL/SQL supporting this recursive relationship will be required.

Before anything else in the database can be created, the rollback segments have
to be built. At this point, the DBA must have a functioning database, a copy of
the respective tablespaces, but only the default SYSTEM rollback segment.

The next step is to create a script to generate DDL to make an exact copy of the
existing rollback segment profile using information in the
DBA_ROLLBACK_SEGS and V_$ROLLSTAT views.

The script should document the rollback segments as they currently exist. The
DBA can then edit the scripts to make any improvements that are required or
desired before executing it on the new database.

12

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

5.4 Documenting Roles, Grants and Users

Before database objects such as tables, indexes, constraints and the like can be
created, there must be users (or Schemas) with the appropriate roles and grants
to create and own them. The next scripts to be created should generate DDL to
create users, roles and grants. Oracle has spread this data to numerous tables.
Fortunately most have the same structure and can be queried using a simple
query structure. The information can be obtained from the following tables:

DBA_TS_QUOTAS,
DBAJJSERS,
DBA_COL_PRIVS/

DBA_ROLE_PRIVS,
DBA_ROLES,
DBA_TAB_PRIVS and
DBA_SYS_PRIVS.

Once you have fully documented all users, roles and grants, your next set of
scripts should provide documentation for the tables and their associated indexes,
constraints, procedures, triggers and views.

5.5 Documenting Tables

Information for documenting application tables can be found in the
DBA_TABLES and DBA_TAB_COLUMNS views. MOD must use PL/SQL so
that the recursive nature of the relationship between tables and table columns
can be easily resolved using cursors and loop constructs.

It is recommended that the DBA should not capture table constraints at this
point. The reason for this is to allow data loading to occur before the constraints
are enabled. A separate script should be written to re-create all primary key,
unique, foreign key, non-"not null" check type and default value constraints.

5.6 Documenting Database Constraints

In many cases the constraints have been specified during the CREATE TABLE
command, but are not named within Oracle 8.i. This lack of naming for a

13

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

constraint will result in Oracle selecting a name consisting of SYS_C with a
sequence number appended to it, such as SYS_C00123. Using PL/SQL the DBA
can re-build, and, at the same time, re-name these constraints.

A simple naming convention for constraints (and their associated indexes)
would be to provide a suffix (PK for primary key, UK for unique, FK for foreign
key and CK for check or default values). The naming convention should be
followed by the table name, and for those constraints for which there can be
more than one per table, a sequential number. For example, FK_ACTCNTL_1
would be the first foreign key constraint on table ACTCNTL.

Constraints come in several forms, primary key (P), foreign key (R), unique (U),
check (C) and default value (V).

Check constraints can be the standard NOT-NULL type constraints or can be a
full-blown verification algorithm. Default value constraints provide a default
value for those fields effected by RDBMS. Since all of the constraints with the
exception of check and default values constraints can be associated with one or
more columns in a table, PL/SQL is again indicated for the script to rebuild (and
possibly rename) the database constraints.

Information needed to document your table constraints can be found in the
DBAJNDEXES (data such as index tablespace, index storage parameters, index
name). The DBA_CONS_COLUMNS (columns involved with the constraint),
and DBA_CONSTRAINTS (showing constraints and their related primary
constraints if they are a foreign key, and all other information for other
constraints) views are also informative for context documentation.

5.7 Documenting Indexes and Sequences in the Database

Indexes are usually created for one of four purposes:

(i) Enforcing a primary key,
(ii) Enforcing a unique value,
(iii) Lookup support on a foreign key, or
(iv) Performance enhancement.

Your constraints rebuilding script should handle primary key, unique and
foreign key type indexes. Your next script should allow you to rebuild all

14

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

indexes in a database. It should pull information from the
DBA_IND_COLUMNS and DBAJNDEXES views.

Since constraints will create indexes for their support (at least for primary and
unique keys), the DBA should create constraints before running any index build
scripts that are strictly look-up in nature. This will ensure that the naming
convention for indexes is enforced. Oracle will only allow one index per a
specified set of column names in a specific table. If a constraint enforcement
index already exists, it will not be rebuilt and renamed by another script.

Since sequences are not a component of standard SQL, many analysts tend to
overlook their function, until they break. Sequences can break if you exceed
their maximum (for an ascending sequence) or minimum (for a descending
sequence) values or place too much stress on a single sequence. By documenting
your sequences you can see how they were created and have a script to recreate
them if it becomes needed. In some situations, such as import or use of
SQL*Loader, sequences used for key values can become out of sync with the
tables they relate to and will require resetting. Use of a documentation script
can speed this process. A SQLPLUS or PL/SQL script can be created to generate
the DDL to rebuild sequences using information from DBA_SEQUENCES.

6. Documenting Packages Bodies, Procedures and Functions

Under Oracle 8.i, the PL/SQL constructs can be stored in the database as
imbedded objects. The lowest level for any object is a procedure or a function.
The procedures and functions in an Oracle database can be grouped by
application or related function into packages (and associated package bodies).
All of the DDL to define PL/SQL stored objects such as packages, package
bodies, procedures and functions is stored in the DBA_SOURCE view and
additional information on them is stored in the DBA_OBJECTS view. By
creating a script which joins these two tables you can re-create any of the objects
mentioned above.

To demonstrate how convoluted not using PL/SQL in recursive type
relationships can become, the process of documenting package bodies,
procedures and functions is shown below using standard SQL and SQLPLUS
scripts.

15

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

The first script is the procedure that does the actual work of selecting the text
from the database and reconstructing the words into a command. It is
called fprcjrctsql:

********************************** *********************************

REM
REM NAME: FPRC_RPT.SQL
REM
REM FUNCTION: Build a script to re-create functions, procedures,
REM packages or package bodies.
REM
REM
set termout off verify off feedback off lines 132 pages 0 heading off
set recsep off space 0
column text format a79
column line noprint
select 'create or replace ' | | text,line
from

dba_source
where

owner = upper('&&l') and
type = upper('&&2') and
name = upper('&&3') and
line = 1;

select text,line
from

dbaJDBJECTS si,
dba_source s2

where
sl.OBJECTJype = upper('&&2') and
sl.owner = upper('&&l') and
sl.object_name = upper('&&3') and
sl.OBJECTJype = sZtype and
sl.owner = s2.owner and
sl.OBJECT_NAME = s2.name and
line > 1

order by 2;

This script can be run in a standalone mode by calling it with the values for
owner, object type and object name. However, it was designed to be called by a
reiterative program called do_fprc.sql which is created by a script run_fprc.sql,
shown below:

************************ ***

16

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

REM
REMNAME : RUN.FPRC.SQL
REM FUNCTION : Generate and execute the crtjfprc.sql procedure
REM USE : Document the procedures and packages and functions
REM for a user or users
REM Limitations : Must have access to dba_source and dba_objects.
REM The FPRC_RCT.SQL procedure must be in same directory
REM
column dbname new_value db noprint
pause Use % for a wildcard - Press enter to continue
accept owner prompt 'Enter object owner:'
accept type prompt Enter object type:'
accept name prompt 'Enter object name:'
prompt Working....
set echo off heading off verify off feedback off
select value dbname from v$parameter where name='db_name';
spool rep_out\&db\do_fprc.sql
select

unique('start fprc_rct' | | owner | |" | |"" | | type | |"" | | " | | name)
from dba_source
where

owner like upper('&owner') and
type like upper('&type') and
name like upper('&name');

spool off
set termout off
spool rep_out\&db\crt_fprc.sql
start rep_out\&db\do_fprc.sql
spool off
exit

*iw**

This script generates a sequence of calls to fprc_rct.sql:

** *****************

start fprc_rct CSPCDBA "PROCEDURE" ADDRMANOTE
start fprc_rct CSPCDBA "PROCEDURE" ENTERRULES
start fprc_rct CSPCDBA "PROCEDURE" ESCALATE
start fprc_rct CSPCDBA "PROCEDURE" GETDETAILDATA
start fprc_rct CSPCDBA "PROCEDURE" GETLEAST
start fprc_rct CSPCDBA "PROCEDURE" GETMAXACTSEQNBR
start fprc_rct CSPCDBA "PROCEDURE" GETSUMMARYHEADERS
start fprc_rct CSPCDBA "PROCEDURE" GETJPAWS0001
start fprc_rct CSPCDBA "PROCEDURE" INSADMINAREA
start fprcjct CSPCDBA "PROCEDURE" INSAFFLNROL

17

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

start fprcjct CSPCDBA "PROCEDURE" INSAUTSYSAREA
start fprcjct CSPCDBA "PROCEDURE" INSCO
start fprcjct CSPCDBA "PROCEDURE" INSCOORG
start fprc_rct CSPCDBA "PROCEDURE" INSCOORGAREA
start fprcjct CSPCDBA "PROCEDURE" INSCOORGAUTH
start fprc_rct CSPCDBA "PROCEDURE" INSEMP
start fprc_rct CSPCDBA "PROCEDURE" INSERTTMPTABLE
start fprcjct CSPCDBA "PROCEDURE" INSINDIV
start fprc_rct CSPCDBA "PROCEDURE" INSINDIVAUTH
start fprcjct CSPCDBA "PROCEDURE" INSORGEMP
start fprcjct CSPCDBA "PROCEDURE" INSSUM
start fprcjct CSPCDBA "PROCEDURE" PAWS1
start fprcjct CSPCDBA "PROCEDURE" POSTERROR

The script run_fprc.sql then executes the dojprcsql script spooling output to
the crt_fprc.sql script. The crtjprc.sql script contains the commands to rebuild
the specified object or objects:

■♦********«************»■»■***********'**********

create or replace PROCEDURE AddRmaNote (
hv_eventid IN event.evntid%TYPE,
hv_actseqnbr IN act.actseqnbr%TYPE,
hvjiser IN INDIV.CUIDNBR%TYPE,
hvjtotes IN VARCHAR2,
hv_status IN OUT NUMBER
)

AS leid NUMBER(IO);
datel DATE;

BEGIN
hv_status := 0;
leid := 0;
BEGIN
SELECT FKLELEID INTO leid FROM INDIV WHERE (CUIDNBR = hvjiser);
EXCEPTION WHEN OTHERS THEN

hv_status := 1;
END;
SELECT SYSDATE INTO datel FROM dual;
IF (leid > 0) THEN
INSERT INTO actvyjmk (ACTVYRMKDT, ACTVYRMKTXT,

FKJ\CTFK_EVENTEVNT,
FK.ACTACTSEQNBR, FK_INDIVFK_LELEID)

VALUES (datel, hvjiotes, hv_eventid, hv_actseqnbr, leid);
END IF;
COMMIT;

END AddRmaNote;
/

create or replace PROCEDURE wkgrp jisr (

18

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

hv_wrkgrp IN COORG.COORGCD%TYPE,
hv_grptyp IN COORG.COORGTYPCD%TYPE,
hv_status IN OUT NUMBER
)

AS
CURSOR wkgrpusr_cur is

SELECT indiv.CUIDNBR, indiv.INDIVLASTNM, indiv.INDIVFRSTNM
FROM orgemp, emp, afflnrol, le, indiv
WHERE (

indiv.FK_LELEID = le.leid AND
le.letypcd = 'EMP' AND
afflnroLFKLELEID = le.leid AND
emp.FK_AFFLNROLAFFLNRO = afflnrol.AFFLNROLCD AND
emp.FK_AFFLNROLFK_AFPL = afflnrol.FK_AFFLNAFFLNID AND
emp.FK_AFFLNROLFK_LELE = afflnrol.FK_LELEID AND
orgemp.FK_EMPEMPSSN = emp.EMPSSN AND
orgemp.FK_COORGCOORGTYPCD = hv_grptyp AND
orgemp.FK_COORGCOORGCD = hv_wrkgrp
);

id indiv.CUIDNBR%TYPE;
fnm indiv.INDIVFRSTNM%TYPE;
lnm indiv.INDIVLASTNM%TYPE;

BEGIN
hv_status := 0;
BEGIN
OPEN wkgrpusr_cur;
FETCH wkgrpusr_cur INTO id, lnm, fnm;
WHILE NOT wkgrpusr_cur%NOTFOUND LOOP
INSERT INTO user_table (cuid,lastnm,frstnm) VALUES (id,lnm,fnm);
FETCH wkgrpusrjcur INTO id, lnm, fnm;
END LOOP;
CLOSE wkgrpusr_cur;
END;
COMMIT;

END wkgrp_usr;

The crt_fprc.sql script, with minor editing if the developers tended to string
commands over several lines, can then be executed to rebuild whichever object
or objects it was invoked to recreate. If the DBA edits the crt_fprc.sql (the code
for the packages) the package bodies, procedures or functions can be modified to
be more readable and to adhere to any coding standards. In laboratories where
many developers may be working on a single project (SCSSTM - St. Petersburg),
the diversity of coding techniques can be astounding. This allows the DBA to
enforce some semblance of order on the code in the database.

19

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

6.1 Documenting Triggers and Views

Triggers are used to enforce referential integrity constraints, enforce snapshot
logic, provide updates on calculated table values, and other database functions.
The triggers required for constraint enforcement, and snapshot upkeep, are
automatically generated by the Oracle kernel. It is suggested that all triggers
created by non-Oracle processes be preceded by some unique set of characters.
In this manner, the script can be made more selective (to ignore the Oracle
created triggers).

The DBA should consider using the CREATE command rather than the CREATE
OR REPLACE command in the program to provide some measure of safety that
existing triggers (created automatically by Oracle) will not be harmed by
running the script. Information for documenting triggers can be found in the
DBA_TRIGGERS and DBA_TRIGGER_COLS views.

The final set of stored objects that should be documented are database views.
Views are used to pre-join tables, provide security or make it easier for non-SQL
literate users to get at complex data. Often times, a developer may create a view
and then forget to document it Information for documenting views can be
found in the DBA_VIEWS. You may need to set the value for longs and adjust
your session linesize parameters to get output that is readable. You can query
the DBA_VEEWS textjength column for the max value: "select max(textjength)
from dba_views;" and set your long value accordingly with the SQLPLUS SET
command.

6.2 Snap Shot and Snap Shot Log Documentation

The DBA may create report scripts that will document snapshots and snapshot
logs in the instance using the DBA_SNAPSHOTS and DBA_SNAPSHOT_LOGS
procedure. Using PL/SQL scripts to rebuild existing snapshots and create new
snapshot logs. However, since these objects seem to change with each new
release it may be difficult to keep up with Oracle's improvements. With new
features such as refresh groups, and the entire new set of replication options, it
may be wise to hold off efforts at generating documentation until Oracle
finalizes all they wish to do with these objects.

20

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

7. Process Termination

At some point an Oracle administrator will be forced to terminate non-essential
Oracle sessions, or will have to conduct a shutdown regardless of database
activity. This is known as killing an Oracle session. Non-essential Oracle
sessions typically consist of active terminal sessions left connected by end users.
These active sessions cause problems when the database is shutdown for backup
or maintenance operations. If there is an active session, a normal mode
shutdown will hang waiting for the session to end.

Killing an Oracle session can be accomplished via one of three methods:

(i) Using the shutdown command with the abort option;
(ii) Using the ALTER SYSTEM kill option; or
(iii) Using an operating system process killer.

Once a session is killed, its status in the V$SESSION view goes to "KILLED", and
the user receives a "session killed" message if they try to reactivate that session.
The session entry in the V$SESSION view will not be physically removed until
the user physically disconnects.

Oracle provides the shutdown command with the abort option, which will
shutdown the database. However, the abort option does not shutdown the
session gracefully. After using the abort option, you have to re-start the session
and perform a normal shutdown before conducting a backup operation1.

Besides the shutdown command with the abort option, you can either issue the
ALTER SYSTEM KILL SESSION command, or you can issue an operating system
process kill command such as the UNIX 'kill -9 pid1. You should not do both.

If you kill both the Oracle process and the operating system process, you could
cause a database hang forcing you to perform a shutdown abort

1 Shutdown immediate and shutdown normal are supposed to be able to handle killed sessions
properly but there have been reports of problems up to version 8.i, on some hardware
platforms.

21

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

7.1 Killing an Oracle Session from the Oracle Side

You can either issue a series of ALTER SYSTEM commands manually, or use a
dynamic SQL script to perform the operation. A PL/SQL procedure is shown
below that performs a kill of a process using the dynamic SQL package;
DBMS_SQL:

create or replace procedure kill_session (session_id in varchar2,
serial_num in varchar2)
as
cur integer;
ret integer;
string varchar2(100);
begin
string :=

'alter system kill session' | |"" | | session_id | |',' \ | serial_num | |'
cur := dbms_sql.open_cursor;
dbms_sql.parse(cur,stringdbms_sql.v7);
ret := dbms_sql.execute(cur) ;
dbms_sql.close_cursor(cur);

exception
when OTHERS then

raise_application_error (-20001,'Error in execution',TRUE);
if dbms_sql.is_open(cur) then

dbms_sql.close_cursor(cur);
end if;

end;
/

***************************** * ** * a**********************;

Using the above procedure, the DBA can then create a quick SQL procedure to
remove the non-required Oracle sessions from the Oracle RDBMS side. An
example of this procedure is shown below:

********************* *********** ***** »ää***** Aft < a ft *****************

REM
REM ORA_KILL.SQL
REM FUNCTION : Kills non-essential Oracle sessions (those that aren't owned
REM : by SYS or "NULL"

22

Modeling Transport Phenomena within the FSU Information Analysis System

Final Report

R&D 8837-EN-01

REM DEPENDANCIES: Depends on kill_session procedure
REM MRA 3/30/00
REM
set heading off termout off verify off echo off
spool kill_all.sql
select 'execute kill_sessionC | | chr(39) | | sid | | chr(39) | | VI I
chr(39) | | serial# | lchr(39) | |');' from v$session
where username is not null
or username <> 'SYS'
/
spool off
start kill_all.sql
exit

An example of the output from ora_kill.sql (kill_all.sql) is:

execute kill_session('10','212');
execute kiU_session('13','1424');

7.2 Killing an Oracle Session From the UNIX Operating System

A second method of removing unwanted sessions is to kill *em fromtiie
operating system side. In UNIX environments this is accomphshedwith the kill
-9' command executed from a privileged user (see the Solaris 7 OS for similar
commands).

A sample command script (shell script) that will remove the non-essential Oracle
sessions for all currently active Oracle databases on the UNIX server is shown

below:

#!/bin/ksh
ORATAB=/etc/oratab
trap'exit'123
Set path if path not set (if called from /etc/rc)

23

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

case $PATH in
"") PATH=/bin:/usr/bin:/etc

export PATH;;
esac
rm kilLlis
rm proc.lis
touch kilLlis
touch proclis

Loop for every entry in oratab

cat $ORATAB | while read LINE
do

case $LINE in
\#*) ;; #comment-line in oratab

*)
ORACLE_SID= echo $LINE | awk-F: '{print $1}'-v

if ["$ORACLE_SID" = '*']; then
ORACLE_SID=""

fi
esac
if ["$ORACLE_SID" <> '*']; then

proc_name='oracle'$ORACLE_SID
ps -ef | grep $proc_name»proc.lis

fi
done
cat proc.lis | while read LINE2
do

command-echo $LTNE2 | awk -F: 'BEGIN { FS = ",[\t]* | [\t]+" }
{print $2}'-v

test_it= echo $LINE2 | awk -F: 'BEGIN { FS = »,[\t]* | [\t]+" }
{print $8}' -v

if ["$test_it" <> 'grep']; then
command='kill -9 '$command
echo $command»kill.lis

fi
done
rm proc.lis
chmod 755 kill.lis
kilLlis
rm kill.lis

The ora_kill.sh script utilizes a technique used in the dbshut and dbstart shell
scripts. This technique uses the /etc/oratab file to determine what databases
should be operating. An alternative to using the oratab file would be to do "ps -
ef | grep smon", redirecting output into a file, and using awk to strip out the SID

24

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

names (similar to the technique used below). Each operating instance will have
one "smon" process, so this makes a logical string value to grep out of the "ps -ef"
process list.

Rilling the sessions from the operating system side will remove their entries
from the V$SESSION view. An example of the output from orajdll.sql (kill.lis)
is:

^«HHt«««*iHHH»*«JH»*»lHW»«*«**^*«**««*«***************

kill-911240
kill -911244
kill -911248
kill -911252
kill-911256
kill-9 9023
kill-9 9025
kill-9 9028
kill -9 9030

25

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

8. Training

During the period 25 January to 4 February 2000 comprehensive training was
conducting in ESRI GIS systems and Oracle RDBMS systems. The Oracle
instruction continued from 16 to 18 February 2000 conducted by Dr. Alexandr
Ptitzyn (IT Corporation Moscow) and Mr. Alexandr Starshinin (Teleconlnvest-
PS, LTd - St Petersburg). In this section, we provide sample images that
describe the training process with the principal MOD students.

Figure 1: Oracle RDBMS Students. The group worked within each IAS laboratory to remotely
access geo-spatial data. In this example, the students are located within the mobile laboratory
using a standard PC workstation that accesses the UNIX Oracle data structures.

26

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

Wüst

Figure 2: Principal Instructor Alexandr Starshinin. Mr. Starshinin works closely with MOD to
manage the system level installation of the Oracle 8 RDBMS. ALL works closely with Oracle
representatives in St. Petersburg and Moscow to assure efficient operations and development of
IAS-RDBMS models.

27

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

W&$$

WM

Figure 3: MOD Student Tutorials. ALL has developed stand-alone student tutorials (laboratory
exercises) that may be used by MOD to test and evaluate their knowledge about a particular
topic. In this case, an MOD student is working with an SQL link that ties Oracle 8 RDBMS to
the ESRI-GIS.

28

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

Figure 4- MOD Trained Professionals. In this figure, Igor demonstrates a new program he has
developed to archive and display geo-spatial data using the Oracle 8 RDBMS and the ESRI-GIS.
As shown, the student is working within the Vibro-Acoustic Laboratory using the 100Base-T
ethernet network designed by ALL. The Oracle data and the CIS data are located m separate
laboratories.

29

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

Figure 5: MOD Geo-Spatial Data Analysis. In this figure, Sergei demonstrates a new technique
for modeling transport phenomena. The algorithm uses data stored within the Oracle 8
RDBMS, but relies on the ESRI-GIS for visual display. Once again, the 100Base-T ethernet
network is used to automatically mount all data structures from the UNIX server.

30

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

m

Figure 6: Technical Development Team. Col. Sergei Shibunin (second from right) leads the
MOD development effort for IAS operations. In this figure, he is conferring with his principal
development team for mobile operations.

31

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

Figure 7: IAS Security. Mr. Stanislav Myasoedov (left) leads the IAS security team. He is
responsible for securing laboratory rooms within the IAS, and is also a member of the mobile
laboratory development team.

32

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

"■"''':

Figure 8- IAS Systsems Administration. Mr. Taras Marenich is the principal MOD systems
administrator for the Oracle RDBMS and the ESRI-GIS. Taras has excellent hardware
development skills, and a good working knowledge of all major systems found within the IAS.
During the course of this R&D training effort, we have developed a very close working
relationship.

33

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

9. Conclusions

Techniques for documenting an Oracle RDBMS are inherently complex since
multiple users and tasks are running simultaneously on servers within five
primary MOD IAS laboratories. Since individual scientists create specialized
databases for their respective investigation, a common framework is required to
insure that a single DBA can ascertain the fidelity of the RDBMS and correct
deficiencies before serious problems affect the performance of the central
processor. In this final report, we provide scripts and procedures for adequately
documenting the Oracle RDBMS using standard SQL functions. The SQL scripts
outlined in this text have been presented to MOD for their respective use, and
general suggestions have been made to help their systems a(lministrator (Taras
Marenich) configure and design a comprehensive documentation program. The
scripts also show safe techniques for terminating Oracle processes and
rebuilding the Oracle RDBMS during emergency operations. These algorithms
may be directly applied to the CTD laboratory for safe administration of the
materials database.

In future efforts, ALL will work with MOD to develop cross-platform methods
for Unking GIS topographic data structures with CTD materials information.
The CTD information is not spatially oriented, but is chronologically organized
according to test procedure. Hence, each data point from the CTD contains a
unique time stamp and instrument attribute. The time stamp is used to simply
organize all available information according to the relevant testing sequence.
For example, if two or more tests are performed on a common material, it is
important to know which material was tested first -- particularly if the same
sample is used in future non-destructive testing. The instrument label is
acquired from the LIMs data structure. Since all LIMs use a proprietary data
structure that may not be SQL compliant, software may be required to translate
the instrument information into a more universal format that is easily used
within the IAS. The translation is also required to export this data to other
systems outside the SCSSTM. Since both the IAS and the emerging CTD will use
a common spatial data engine (Oracle), the exchange requirements may be
minimized by using a common database structure. The structure should have
variables in place to store the (x,y,z) spatial data and related fields for storing
the instrument and time attribute information. In additional, in situ samples
from mobile operations will require additional fields that link the field sample
location to the related within laboratory measurement.

34

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

It is anticipated that ALL will assist MOD in the development of future database
systems for the CTD. This research is essential to the mission requirements of
DTRA and £RO, and has produces some very fruitful results in the field of
computer science, applied mathematics, and engineering. We look forward to
close collaboration with ERO in future research efforts.

35

Modeling Transport Phenomena within the FSU Information Analysis System
Final Report

R&D 8837-EN-01

9. References

Black, James D., "Fusing RDBMS and GIS," GIS World, July 1999, pp. 44^7.

Conway, J.W., K.D. Hondl, M.J. Moreland, J.M. Cordell, and R.J. Harron, 1995: Improvements in
the WSR-88D dealiasing algorithm: The pursuit of the final, most important gate. Preprints, 27th
Conf. Radar Meteor., Vail, CO, 145-147.

Donaldson R.J. Jr. and P.R. Desrochers, 1994: Ecosystem detection and warning by GIS. The
Tornado: Its Structure, Dynamics, Prediction, and Hazards. C. Church, Ed., Amer. Geophys.
Union, 203-221.

Doswell, C.A. HI, S.J. Weiss, and R.H. Johns, 1993: Ecosystem forecasting: Structure, Dynamics,
Prediction, and Hazards. C. Church, Ed., Amer. Geophys. Union. 557-571.

ESRI Systems Administrators Guide 1999. The Environmental Systems Research Institute,
Redlands, California, 285-289.

Green, G.D., E.D. Mitchell, and J.A. Haro: Mini-supercell interaction: The February 13, 1995
Mesa Event. WRH Technical Attachment, No. 96-32.

Healey, R.G., "Database Management Systems," Geographical Information Systems, Volume 1:
Principles, 1999, pp. 251-267, Longman Scientific and Technical, New York.

Horn, B. K. P., Understanding Image Intensities, J. Artif. Intell., 8,1997.

Masuch, J.M.F., 1999: Interim Project Report I-V, ERO III, The European Research Office,
London, England.

Oracle Systems Support - Reference Manual, 1999. The Oracle Corporation, Provo, Utah, 110-
193.

Spitzer, Tom, "A Database Perspective on GIS," DBMS, November 1999, pp. 95-102.

Williams, L., Pyramidal Parametrics,, J. Comput. Graphics, 22,1998.

Watts, B.A., and F.L. Ogden, 1998: Formation of Saturated Areas on Hillslopes with Shallow
Soils, submitted for publication,Water Resources Research, AGU.

36

AO NUMBER DATE

1. REPORT IDENTIFYING INFORMATION

A. ORIGINATING AGENCY UrfW ftsOi^öATW

DTIC ACCESSION
r

B. REPORT TITLE AND/OR NUMBER W^uWCc r

Anftw/SiS &ys-f£it\

C. MONITOR REPORT NUMBER

fob S83-7-£r^O
D. PREPARED UNDER CONTRACT NUMBER

[T DISTRIBUTION STATEMENT

HPPROUED FOR PUBLIC RELEHSE

DISTRIBUTION UNLIMITED

FINAL

B£OJl£ä

I. Putyouri
on more

2. CompW»

3. /Mien for
maltrfk

4. (/Munch

5. Oomf on
tor«to<

Bllfii

2. Rttont

DITIONS ARE OBSOLETE

